
Power Fault Tolerance
Technical Report (WIP)

Protocol Labs

July 27, 2017

Abstract

Byzantine Fault Tolerance (BFT) accounts for faults as the number of faulty nodes and is thus cumber-
some to apply to many modern decentralized systems. We introduce the Power Fault Tolerance (PFT)
model, which reframes BFT in terms of participants’ influence over the outcome of a protocol, instead
of the number of nodes. In PFT, n is the total power, and f is the fraction of power controlled by faulty
or adversarial participants.
This work:

(a) provides a formal definition and properties for PFT;

(b) generalizes Byzantine Consensus (BC) protocols of different classes (permissioned, permissionless,
and federated) into a single class of Power Consensus (PC);

(c) explores new directions for PC protocols, particularly for blockchains, and protocols that can detect
and make progress during catastrophic network partitions;

Work in Progress. This is a work in progress Technical Report from Protocol Labs. Active research
is under way, and new versions of this paper will appear. For comments and suggestions, contact us at
research@filecoin.io

1 Byzantine Fault Tolerance and Consensus

Before formally defining the Power model, we must review Byzantine Fault Tolerance (BFT) and Byzantine
Consensus (BC).

Definition 1.1. (BFT) A (n, f)-BFT protocol has n participants and is able to tolerate up to f Byzantine
faults. Traditionally, n−f participants are correct (or honest, altruistic) and follow the protocol correctly; f
are faulty (or byzantine, malicious, and adversarial), and may deviate from the protocol arbitrarily. Secure
BFT protocols satisfy the following criteria:

• (Safety) If n− f correct participants execute the protocol correctly, then any actions of f faulty partic-
ipants cannot cause the protocol to fail unexpectedly.

• (Liveness) Correct participants eventually make progress.

There are many kinds of BFT protocols; this work is most relevant to Consensus and closely-related protocols:

• (BC) In Byzantine Consensus protocols, also known as Byzantine Agreement [4, 5, 9], participants
propose and agree upon values in a sequence of epochs. This is one of the main academically studied
classes of BFT protocols. Often, results are framed in terms of a binary version, Binary Byzantine
Agreement (BBA).

• (BSR) In Byzantine State-Machine Replication protocols [1, 2, 13], participants receive a sequence of
state-changing requests from clients, participants must propagate the effect of requests to each other, and
all correct participants must come to agreement on the values or responses externalized to the clients.

• (BBC) In reliable Byzantine Broadcast protocols, a single designated sender (or dealer) sends out a
value to the rest of the participants, and all correct participants must agree on the value. This is similar
to but simpler than consensus. BBC is the original Byzantine Generals problem [9].

1



• (Blockchain) In Blockchain protocols [3, 6, 11, 12], a set of participants receive transactions from clients,
and participants create a probabilistically consistent log of all transactions. Secure Blockchains can be
constructed to be equivalent to BSR protocols.

The Power model is useful in all these variants. This work will primarily explore BC and Blockchain. The
BC problem is characterized by the propose and decide events: every party executes propose(v) to start the
protocol and decide(v) to terminate it with a value v.

Definition 1.2. (BC) A protocol for Byzantine Consensus (BC) with n players and up to f faults, who
propose values, find agreement, and decide on values, satisfies:

• (Validity) If all correct parties propose value v, then some correct party eventually decides v.

• (Agreement) If some correct party decides on v, and some other correct party decides on v′, then v = v′.

• (Termination) Every correct party eventually decides.

BC protocols are often structured in a sequence of rounds or epochs. At the end of a BC protocol, participants
output a sequence of values V, and at each epoch t, participants decide on a value vt∗ ∈ V. During an epoch t,
a single or multiple participants propose a single or multiple candidate values vti , which are communicated to
other participants the network. Participants vote on or commit to candidate values. Consensus for epoch t
is achieved and vt∗ is agreed-upon when a candidate value vti gathers enough (non-repudiable and non-faulty)
commitments to pass a fault-tolerance threshold n − f , usually a fixed parameter of the protocol. Some
protocols proceed in non-overlapping epochs, meaning a candidate value vti is proposed and consensus is
reached on vt∗ before a candidate value vt+1

i for the next epoch t + 1 is proposed; other protocols proceed
in overlapping epochs, where candidate values vt+1

i may be proposed before consensus is achieved on vt∗.
Blockchains are most similar to sequential, epoch-overlapping BC.

1.1 Power in Consensus

The standard consensus models BC and BSR use networks of equal participants and model fault tolerance
as a fraction of the total number of participants (e.g. n ≥ 3f + 1). In a sense, every participant has an equal
amount of power and influence over the outcome of the protocol. In this permissioned model, all participants
must be known and authorized, otherwise an adversary could generate Sybil identities and trivially capture
the consensus.

Modern open-membership or permissionless consensus protocols permit unknown participants to join the
protocol, and thus must ensure Sybil identities confer no advantages to an adversary. This has been achieved
in a variety of ways, yielding different classes of protocols:

• In Proof-of-Work Blockchain protocols [8, 11, 14], participants use control over some scarce resource
(power) – such as computation, memory capacity, storage, or bandwidth – and commit this scarce
resource as a vote on one of the potential outputs of the protocol. The fault-tolerance assumption is
described in terms of a fraction of the total resources committed by the participants.

• In Proof-of-Stake Blockchain protocols [3, 7], participants accrue stake (power) by participating correctly
in the protocol, and commit stake on one of the potential outputs of the protocol; stake is scarce, and
can be reduced or entirely destroyed if faulty behavior is detected. The fault-tolerance assumption is
described in terms of a fraction of the total stake of all participants.

• In FBA (Federated Byzantine Agreement) protocols [10], participants use quorum-slices – individual trust
decisions, proportional to relative power, that determine system-level quorums. Fault-tolerance depends
on quorum-slices and the individual trust decisions of participants (i.e. the influence participants exert
on others).

The departure from simple participant counts toward several different types of counting majorities (e.g.
resources, stake, relative trust, etc) has made it difficult to reason about all consensus protocols cohesively.
It has also yielded many protocols that are tightly coupled to their specific type of consensus instead of
being described generically. The Power Fault Tolerance model (PFT) unifies all these classes of protocols

2



by modeling the influence participants have over the output of the protocol as power, and recasting the
traditional fault-tolerance assumptions in terms of total power n and a tolerated faulty fraction of power f .

2 Formalizing Power and Influence

Formalizing the notion of power helps us draw useful conclusions about consensus protocols across these
different classes, as well as describe general protocols that work with any instantiation of power.

Definition 2.1. (Power) Protocol Π has total power Pt at each epoch t. A participant i has power pti at

epoch t, such that
∑
i

pti = Pt

Remark. In some protocols, the total power is fixed across all epochs. In others, it changes across epochs
as participants join or leave, or as participants acquire or lose power.

Definition 2.2. (Influence) The influence (or normalized power) Iti of a participant i over the output of

epoch t is defined as the fraction of the total power Pt controlled by i, such that Iti =
pti
Pt

and
∑
i

Iti = 1.

Definition 2.3. (Power Consensus) An (n, f)-PowerConsensus protocol with k participants has n total
power, and is capable of tolerating up to f faulty power, satisfies:

• (Validity) If all correct power proposes v, then some correct power eventually decides v.

• (Agreement) All correct power that decides on a value, decides on the same value v.

• (Termination) All correct power eventually decides.

• (Conservation) If power is committed to a candidate value vta then it cannot be committed to any other

value vtb, and all power committed to candidate values in epoch t must be up to n power (
∑
i

pv
t
i ≤ n).

2.1 Variants of Power Protocols

How protocols instantiate power will have implications on the properties of the protocols. For example:

• Fixed or Variable Power. In some protocols, the total power is fixed across all epochs. In others, it
changes across epochs as participants join or leave, or as participants acquire or lose power.

• Public or Private Power. In some protocols, nodes must publicly announce their power to the rest
of the network. For example, in common Proof-of-Stake systems power is accounted publicly. In
others, participants do not have to disclose their power. For example, in some Proof-of-Work systems,
participants do not have to disclose their power; they can commit it privately and externalize only
partial information.

• Exact or Estimated Power. In some protocols, power is accounted exactly (for example, common
Proof-of-Stake and BC protocols). In others, power is estimated based on the likelihood of events
(for example, common Proof-of-Work protocols). This applies separately to individual power (pi) and
total power (P ): it is possible to have exact total power with only estimates of individual power. The
exactness of the accounting may drastically affect the security of the protocol.

• Verifiable Power. In order to conserve power, some protocols will need to provide a mechanism for
participants to prove that they own the power they announced, or malicious users can pretend to have
more power than they really have.

• Rational. Some byzantine protocols have looser restrictions, such as the n power must be controlled
by rational actors, not directly honest ones.

3



3 Generalizing with Power Schemes

BFT Protocols can be described or formulated generally in terms of power and a power scheme PS where

PS = (SetPower,CommitPower,CountPower)

• {0, 1} ← SetPower(pti) is a function that adjusts i’s power at epoch t to pti.

• In some protocols, the power is explicitly fixed as a network parameter (e.g. 1/(# of participants) in
permissioned protocols).

• In other protocols this must be accounted for publicly and verifiably (e.g. Proof-of-Stake protocols
generally need to account all available stake).

• In other protocols the power is a secret value that changes at any time at the will of each participant
(e.g. in Proof-of-Work protocols users may acquire more resources and add them to the network at
any time).

• {0, 1} ← CommitPower(pti,j , v
t
j) is a function that commits pti,j some of i’s power at epoch t to the

candidate value vtj .

• It is critical that power is scarce, and cannot be committed to multiple candidate values. For example
if Proof-of-Work protocols do not adequately ensure the power is committed only to a single candidate
value, then participants could attempt to pursue multiple simultaneous histories and perhaps break
the consensus.

• In some protocols, each participant’s power must only be committed in totality to a single candidate
value (e.g. permissioned protocols, and Proof-of-Stake protocols), doing otherwise is considered faulty.

• In other protocols, a participant’s power can be committed partially to more than one candidate
value (e.g. in Proof-of-Work protocols users may commit any fraction of their power to any candidate
value, though this is generally not useful).

• pv
t
j ← CountPower(vtj) is a function that counts the amount of power committed at epoch t to a candidate

value vtj . Participants use CountPower to sort candidate values and pick the winner.

• Usually, the power committed to a candidate value must pass the fault-tolerance threshold of the

epoch before it is accepted as the winning value (e.g. the majority of the power: pv
t
j > 1

2n
t)

• This could be counted in terms of influence instead, which may be easier for some protocols (Iv
t
j > 0.5).

• In most protocols, the power committed to a candidate value is fixed for the duration of the protocol
and counts the same for all participants.

• In other protocols, the power committed to a candidate value is relative (e.g. in FBA protocols trust
is relative, which also makes influence relative).

3.1 Example: traditional permissioned BC protocols

In the traditional permissioned BFT protocols, each participant’s power and influence are equal (e.g. pti = 1
and Iti = 1/nt). In some protocols, all the participants are fixed for the duration of the protocol. In other
protocols participants may change, adjusting influence accordingly.

• SetPower is always SetPower(1), called at initialization (or whenever a participant joins).

• CommitPower always commits a participant’s full power, and is called when a participant votes for
(prepares, or commits) a value.

• CountPower counts the votes (commitments) for a candidate value. Some protocols have leaders and
a single proposed value per epoch. Other protocols are leaderless or allow proposing multiple values

4



simultaneously. The count must pass the fault-tolerance threshold (e.g. pv
t
j > 1

2n
t or pv

t
j > 2

3n
t) for a

value to be output.

3.2 Example: Proof-of-Work consensus protocols

In Proof-of-Work protocols, each participant’s power at a particular epoch is determined by however many
resources they commit to computing Proofs-of-work on top of candidate values. A participant’s influence is
their power divided by the total resources the network as a whole commits to all candidate values. In many
Proof-of-Work protocols, a given pti is secret and hard to calculate exactly, but the whole network’s Pt can
be estimated closely enough to adjust fault-tolerance thresholds.

For example, in Bitcoin, pti is the hashing power participant i commits to mining for next block on top of a
blockchain head of epoch t (the candidate value); this is a secret value and hard to estimate. Pt is the sum
of all hashing power in the network at epoch t; this can be estimated based on the rate of chain growth, and
adjusted for by changing the Proof-of-Work target per block. Errors in this estimate slow or speed up the
protocol.

• SetPower is usually individual and secret; it is set implicitly whenever a participant changes their amount
of available resources (in Bitcoin, when a miner increases or decreases their hashing power).

• CommitPower is usually individual and secret; it happens implicitly whenever a participant starts com-
puting expensive Proofs-of-work to find a candidate value for epoch t+1, on top of their chosen candidate
value of the previous epoch t. Candidate values usually externalize the resources committed towards craft-
ing them. In Bitcoin, CommitPower happens when a miner commits hashing power to mine on top of a
last blockchain head; and only mined blocks externalize any of the power committed.

• In some protocols, only winning values externalize the work performed (and thus the power commit-
ted) to the rest of the network. Other protocols attempt to surface more of the power committed,
and count it toward the fault-tolerance threshold (e.g. GHOST, Ethereum, Filecoin).

• Future improvement directions for this class of protocols include (a) better accounting of all the power
committed, (b) committing resources without wasting them, and (c) committing resources without
using them, via probabilistic methods.

• CountPower counts the resources expended in calculating a given candidate value, and all parent values
in that history. In Bitcoin and other blockchain protocols, this is known as the length, weight, or quality
of a blockchain (or in some protocols, the whole blocktree).

4 Future Work

This technical report aims at presenting a definition of power and influence and models faults in a distributed
system in terms of power. Future work for this technical report include:

• Formalization of conservation of power : power must be conserved whenever participants cast their
vote for a candidate value.

• Provide examples for Proof-of-Stake protocols and FBA protocols.

Acknowledgements

This work is the cumulative effort of multiple individuals within the Protocol Labs team, and would not
have been possible without the help, comments, and review of the collaborators and advisors of Protocol
Labs. Juan Benet and Nicola Greco conceived of the power model. Juan Benet formalized the Power Fault
Tolerance and Power Scheme in collaboration with the rest of the team, who provided useful contributions,
comments, review and conversations.

5



References

[1] C. Cachin. State machine replication with byzantine faults. In Replication, pages 169–184. Springer,
2010.

[2] M. Castro, B. Liskov, et al. Practical byzantine fault tolerance.

[3] P. Daian, R. Pass, and E. Shi. Snow white: Robustly reconfigurable consensus and applications to
provably secure proofs of stake. Technical report.

[4] D. Dolev and H. R. Strong. Authenticated algorithms for byzantine agreement. SIAM Journal on
Computing, 12(4):656–666, 1983.

[5] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial synchrony. Journal of
the ACM (JACM), 35(2):288–323, 1988.

[6] I. Eyal, A. E. Gencer, E. G. Sirer, and R. Van Renesse. Bitcoin-ng: A scalable blockchain protocol.

[7] A. Kiayias, A. Russell, B. David, and R. Oliynykov. Ouroboros: A provably secure proof-of-stake
blockchain protocol. Technical report.

[8] E. K. Kogias, P. Jovanovic, N. Gailly, I. Khoffi, L. Gasser, and B. Ford. Enhancing bitcoin security and
performance with strong consistency via collective signing.

[9] L. Lamport, R. Shostak, and M. Pease. The byzantine generals problem. ACM Transactions on
Programming Languages and Systems (TOPLAS), 4(3):382–401, 1982.

[10] D. Mazieres. The stellar consensus protocol: A federated model for internet-level consensus.

[11] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash system, 2008.

[12] S. Park, A. Kwon, J. Alwen, G. Fuchsbauer, P. Gazi, and K. Pietrzak. Spacemint: A cryptocurrency
based on proofs of space.

[13] L. Ren, K. Nayak, I. Abraham, and S. Devadas. Practical synchronous byzantine consensus. arXiv
preprint arXiv:1704.02397, 2017.

[14] G. Wood. Ethereum: A secure decentralised generalised transaction ledger.

6


